Computer Aided Earthmoving System
CAES for Landfills

Landfill Compactors
Track-Type Tractors
Wheel Tractor Scrapers
Motor Graders

System Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications Radio</td>
<td>TC900B</td>
</tr>
<tr>
<td>GPS Antenna</td>
<td>L1/L2</td>
</tr>
<tr>
<td>GPS Receiver</td>
<td>MS840</td>
</tr>
<tr>
<td>In-Cab Display</td>
<td>CAES Touch Screen Display</td>
</tr>
<tr>
<td>CAESoffice™/METSmanager</td>
<td></td>
</tr>
</tbody>
</table>
Computer Aided Earthmoving System for Landfills

Advanced GPS technologies for earthmoving equipment improve machine efficiency, maximize air space utilization, and extend landfill life.

Caterpillar is helping customers revolutionize the way they compact trash, grade slopes and manage their operation with new technology solutions for landfills. Solutions that provide greater accuracy, higher productivity, lower operating costs, more profitability and longer landfill life.

The Computer Aided Earthmoving System (CAES) is a high technology earthmoving tool that allows machine operators to achieve maximum landfill compaction, desired grade/slope, and conserve and ensure even distribution of valuable cover soil with increased accuracy without the use of traditional survey stakes and crews. Using global positioning system (GPS) technology, machine-mounted components, a radio network, and office management software, this state-of-the-art machine control system delivers real-time elevation, compaction and grade control information to machine operators on an in-cab display. By monitoring grade and compaction progress, operators have the information they need to maximize the efficiency of the machine, resulting in proper drainage and optimum airspace utilization.

This advanced technology tool also aids in the identification of site-specific storage areas for hazardous, medical, industrial, and organic waste requiring special handling and placement records.

Applications
CAES is an ideal tool for landfill planning, engineering, surveying, grade control, and production monitoring applications in dump areas. CAES is specifically designed for use on landfill compactors, track-type tractors, wheel tractor scrapers, and motor graders.

On-Board Components
- CAES Touch Screen Display
- GPS Receiver
- GPS Antenna (L1/L2)
- Communications Radio

Off-Board Components
- GPS Reference Station
- Radio Network
- CAES Office/METSmanager

Operation
CAES uses GPS technology, a wireless radio communications network, and office software to map landfills, create site plans, locate a machine’s position, and track compaction and earthmoving progress with complete accuracy.

The receiver uses signals from GPS satellites to determine precise machine positioning. Two receivers are used to capture and collect satellite data – one located at a stationary spot on the landfill site, and another located on the machine. Signals from the ground-based reference station and on-board computer are used to remove errors in satellite measurements for centimeter accuracy.

The CAES-enabled machine is driven over the site to create a digital terrain design file. Using the radio network and office software, landfill terrain data is transmitted from the machine to the landfill office. Landfill managers can then send the work plan from the office to the in-cab display to show operators the work to be done.

The in-cab display provides the operator with an overhead and cross-sectional three-dimensional surface view of the color-coded work plan and precise machine location. The software continuously updates terrain and machine position information as the machine traverses the site.

CAES gives the operator the ability to control grade by monitoring progress on the in-cab display, which shows a graphical representation of lift thickness and compaction density. Cut/fill numbers are displayed in real-time as the machine moves across the site, which allows the operator to know precise elevation, material spread, compaction passes, and required cut or fill at any point on the job.
The compactor display shows colored grids representing the number of compaction passes the machine has made across each area. As the compactor wheel travels over an area, the screen changes color to acknowledge the pass. Green areas indicate when optimum compaction has been reached. The system also monitors thick lift information and visually displays when a lift exceeds maximum site parameters.

In tractor, scraper and motor grader applications, the color display graphically shows the operator cut, fill, and grade work to be done according to plan. As the machine works, the screen changes color. Green indicates when the operator has achieved plan grade.

By providing immediate feedback on the accuracy of each pass, CAES operators have the information and confidence they need to work more efficiently, productively and profitably.

On-Board Components

Communications Radio. The rugged radio, mounted on the roof of the machine, is used for transmitting, repeating and receiving real-time data from GPS receivers. The radio broadcasts real-time, high-precision data for GPS applications. Under normal conditions, the 900 MHz radio broadcasts data up to 10 km (6.2 miles) line-of-sight. Coverage can be enhanced with a network of repeaters, which allows coverage over a broader area. Optimized for GPS with increased sensitivity and jamming immunity, the radio features error correction and high-speed data transfer, ensuring optimum performance. A 450 MHz radio solution is also available.

GPS Antenna (L1/L2). The dual frequency external antenna, mounted on the roof of the machine and reference station, is used to pick up the signals from the GPS satellites to determine the machine’s position for high precision, real-time machine guidance and control. A low-noise amplifier provides sensitive performance in demanding applications. The compact, low profile design and sealed housing ensure reliable performance in harsh weather conditions.

GPS Receiver. The dual frequency real-time kinematic (RTK) GPS receiver is used to send and receive data simultaneously across the radio network. The system computes differential corrections for real-time positioning with centimeter accuracies, to ensure precise machine guidance and control.

CAES Touch Screen Display. The in-cab graphical display provides real-time operating information to the operator. Designed for simple operation, the 264 mm (10.4 in) custom configurable, integrated touch screen display allows operators to easily interface with the CAES system. The display utilizes the latest infrared touch and transflective backlight technology for superior viewing in bright light conditions and a broad-range dimmable backlight for viewing in low light conditions. Designed for reliable performance in extreme operating conditions, the unit is guarded against shock and sealed to keep out dust and moisture.
Off-Board Components

GPS Technology. Global Positioning System (GPS) technology uses 24+ satellites that orbit above the earth and constantly transmit their positions, identities and times of signal broadcasts to earth-based satellite sensors. The GPS receiver is an electronic box, which measures the distance to each visible satellite from an antenna on the ground. Through trilateration, the receiver determines where the satellite is in respect to the center of the earth. The GPS receiver uses its own position and GPS satellite positions to calculate errors and corrections for computing exact location and precise positioning with centimeter accuracy.

GPS Reference Station. A GPS reference station is used to achieve the centimeter level accuracy needed in a landfill application. The reference station sends GPS information over a radio link to the GPS receiver on the CAES-enabled machine. The receiver combines the information with its own observations to compute precise positioning.

Radio Network. The radio network for CAES has two channels. GPS correction data is transmitted over one channel, while the other channel is used to send site planning and production data to the machine and from the machine back to the site office. By utilizing the same radio as a repeater the range can be extended to provide seamless coverage around local obstacles such as hills or large buildings. Up to four radio repeaters may be used to provide extended coverage.

Landfill Planning Software. Site planning and surveying begins with the landfill planning software. CAES is compatible with most third party CAD planning software packages. Data formats used between the CAES software and the planning software are industry standard .DXF and ASCII.

CAESoffice™. The powerful Caterpillar-designed CAESoffice software enables landfill management to monitor CAES-equipped machines and work progress throughout the site in near real-time. The data is stored in a database format for easy customized access, reporting and editing.

METSmanager. This software package allows for integration of the landfill planning system and the machine. It provides the user interface for CAES and controls all communications over the wireless radio network. METSmanager reads design files in standard .DXF formats, converts them to CAES format (.CAT), and sends the design files to the on-board display on the machine over the radio network. This program continually updates the site model by regularly requesting data transmissions from the machine to the office.

- File Window. Displays design files (.DXF) created using the site planning package, and holds application configuration files for GPS receivers and files converted from .DXF to the CAES on-board software format (.CAT).
- Machines Window. Shows icons of each machine equipped with CAES on-board software. Allows multiple machines to be monitored at the same time.
- Messages Window. Contains a list of recent error, warning, confirmation, or information messages generated by METSmanager.
- Communications Queue Window. Lists all file transmissions scheduled to occur over the radio network and displays transmission status for all files.
Specifications

TC900B Communications Radio
- Technology: Spread spectrum
- Modes: Base, repeater, rover
- Optimal Range: 10 km (6 miles), line-of-sight
- Typical Range: 3-5 km (2-3 miles) varies w/terrain and operating conditions.
- Frequency Range: 902-928 MHz
- Networks: Ten, user selectable
- Transmit Power: Meets FCC requirements, 1 watt max.
- License Free (U.S. and Canada)
- Wireless Data Rates: 128 Kbps
- Operating Temperature:
 - –40°F to 70°F (–40°F to 158°F)
 - –40°C to 85°C (–40°F to 185°F)
- Storage Temperature:
 - –40°C to 85°C (–40°F to 185°F)
 - Humidity: 100%
- Sealing: IP68 sealed to ±5 psi
- Weight: 1.695 kg (3.8 lb)

MS840 GPS Receiver
- Tracking: 9 channels L1 C/A code, L1/L2 full cycle carrier, fully operational during P-code encryption
- Signal Processing:
 - Supertrak multibit technology, Everest multipath suppression
 - Positioning Mode –
 - Synchronized RTK: 1 cm + 2 ppm horizontal accuracy/2 cm + 2 ppm vertical accuracy, 300 ms latency, 5 Hz std. maximum rate
 - Low Latency: 2 cm + 2 ppm horizontal accuracy/3 cm + 2 ppm vertical accuracy, <20 ms latency, 20 Hz maximum rate
- Range: Up to 20 km from base for RTK
- Communication: 3x RS-232 ports, baud rates up to 115,200
- Control Interface: SAE J1939 CAN
- Configuration: RS-232 Serial connection
- Communication Rate: 1.5 MHz
- Operating Environment: Embedded Win NT
- Operating Temperature:
 - –20°C to 70°C (–4°F to 158°F)
 - –50°C to 85°C (–58°F to 185°F)
- Storage Temperature:
 - –50°C to 85°C (–58°F to 185°F)
 - Sealing: IP68 sealed to ±5 psi
 - Humidity: 100%
- Electrical Input: 9-32V DC
- Power Supply: 5 amp @ 40W load dump, reverse voltage, ESD, over voltage protection
- Connector: 70-pin
- Discrete I/O: 8 digital ports; 5 PMW inputs
- Mounting: bracket or panel
- Height: 261 mm (10.28 in)
- Width: 315 mm (12.4 in)
- Depth: 93 mm (3.66 in)
- Weight: 3.17 kg (8.5 lb)

CAES office/METS manager
- PC Requirements
 - Pentium II/III processor w/
 - 128 MB memory
 - 21 in. monitor (SVGA color 1024 × 768 resolution) with 2MB video memory
 - Windows NT 4.0 or higher with latest service pack
 - Modem- internal or external (required for remote support)
 - Required ports: serial (suggest 2 serial, 1 parallel)
 - CD ROM drive
 - 3.5 in disk drive
 - Mouse or suitable pointing device
 - Hard Drive Space: 200 MB min.

Customer Support. For over 25 years, Caterpillar has been providing electronic and electrical components and systems for the earthmoving industry – real world technology solutions that enhance the value of Cat products and make customers more productive and profitable. Your Cat Dealer is ready to assist you with matching machine systems to the application or obtaining responsible, knowledgeable support. For additional information, please contact us at LANDFILLGPS@CAT.com
Computer Aided Earthmoving System for Landfills

Landfill Compactors
Track-Type Tractors
Wheel Tractor Scrapers
Motor Graders